85 research outputs found

    De novo sequencing of MS/MS spectra

    Get PDF
    Proteomics is the study of proteins, their time- and location-dependent expression profiles, as well as their modifications and interactions. Mass spectrometry is useful to investigate many of the questions asked in proteomics. Database search methods are typically employed to identify proteins from complex mixtures. However, databases are not often available or, despite their availability, some sequences are not readily found therein. To overcome this problem, de novo sequencing can be used to directly assign a peptide sequence to a tandem mass spectrometry spectrum. Many algorithms have been proposed for de novo sequencing and a selection of them are detailed in this article. Although a standard accuracy measure has not been agreed upon in the field, relative algorithm performance is discussed. The current state of the de novo sequencing is assessed thereafter and, finally, examples are used to construct possible future perspectives of the field. © 2011 Expert Reviews Ltd.The Turkish Academy of Science (TÜBA

    PGMiner: Complete proteogenomics workflow; from data acquisition to result visualization

    Get PDF
    In parallel with the development of nucleotide sequencing an equally important interest in further describing the sequence in terms of function arose and the latter represents the current bottleneck in the overall research question. Sequencing the transcriptome allows determination of expressed nucleotide sequences and using mass spectrometry allows sequencing on the protein level. Both approaches can only sequence a subset of the existing transcripts. Moreover, for example post translational modification events can only be determined on the proteomics level. Therefore, it is essential to combine proteomics and genomics. For that purpose, proteogenomics data analysis pipelines have been described. Here, we describe a novel proteogenomics workflow which encompasses everything from the acquisition of data to result visualization in the Konstanz Information Miner (KNIME), a state of the art workflow management and data analytics platform. We amended KNIME with a number of processes like peptide consensus prediction, peptide mapping, and database equalizing, as well as result visualization. This enabled construction of our new workflow, entitled PGMiner, which not only includes all data analysis steps, but is highly customizable which is rather cumbersome for most existing pipelines. Furthermore, no burdensome installation processes have to be performed making PGMiner the most user friendly tool available.Scientific and Technological Research Council of Turkey (114Z177); Izmir Institute of Technology (2013IYTE04

    Comparison of four Ab initio MicroRNA prediction tools

    Get PDF
    International Conference on Bioinformatics Models, Methods and Algorithms, BIOINFORMATICS 2013; Barcelona; Spain; 11 February 2013 through 14 February 2013MicroRNAs are small RNA sequences of 18-24 nucleotides in length, which serve as templates to drive post transcriptional gene silencing. The canonical microRNA pathway starts with transcription from DNA and is followed by processing by the Microprocessor complex, yielding a hairpin structure. This is then exported into the cytosol where it is processed by Dicer and next incorporated into the RNA induced silencing complex. All of these biogenesis steps add to the overall specificity of miRNA production and effect. Unfortunately, experimental detection of miRNAs is cumbersome and therefore computational tools are necessary. Homology-based miRNA prediction tools are limited by fast miRNA evolution and by the fact that they are template driven. Ab initio miRNA prediction methods have been proposed but they have not been analyzed competitively so that their relative performance is largely unknown. Here we implement the features proposed in four miRNA ab initio studies and evaluate them on two data sets. Using the features described in Bentwich 2008 leads to the highest accuracy but still does not provide enough confidence into the results to warrant experimental validation of all predictions in a larger genome like the human genome. Copyright © 2013 SCITEPRESS - Science and Technology Publications.Turkish Academy of Science

    Computational Prediction of MicroRNAs from Toxoplasma gondii Potentially Regulating the Hosts’ Gene Expression

    Get PDF
    AbstractMicroRNAs (miRNAs) were discovered two decades ago, yet there is still a great need for further studies elucidating their genesis and targeting in different phyla. Since experimental discovery and validation of miRNAs is difficult, computational predictions are indispensable and today most computational approaches employ machine learning. Toxoplasma gondii, a parasite residing within the cells of its hosts like human, uses miRNAs for its post-transcriptional gene regulation. It may also regulate its hosts’ gene expression, which has been shown in brain cancer. Since previous studies have shown that overexpressed miRNAs within the host are causal for disease onset, we hypothesized that T. gondii could export miRNAs into its host cell. We computationally predicted all hairpins from the genome of T. gondii and used mouse and human models to filter possible candidates. These were then further compared to known miRNAs in human and rodents and their expression was examined for T. gondii grown in mouse and human hosts, respectively. We found that among the millions of potential hairpins in T. gondii, only a few thousand pass filtering using a human or mouse model and that even fewer of those are expressed. Since they are expressed and differentially expressed in rodents and human, we suggest that there is a chance that T. gondii may export miRNAs into its hosts for direct regulation

    Development of genomic simple sequence repeat markers in opium poppy by next-generation sequencing

    Get PDF
    Opium poppy (Papaver somniferum L.) is an important pharmaceutical crop with very few genetic marker resources. To expand these resources, we sequenced genomic DNA using pyrosequencing technology and examined the DNA sequences for simple sequence repeats (SSRs). A total of 1,244,412 sequence reads were obtained covering 474 Mb. Approximately half of the reads (52 %) were assembled into 166,724 contigs representing 105 Mb of the opium poppy genome. A total of 23,283 non-redundant SSRs were identified in 18,944 contigs (11.3 % of total contigs). Trinucleotide and tetranucleotide repeats were the most abundant SSR repeats, accounting for 49.0 and 27.9 % of all SSRs, respectively. The AAG/TTC repeat was the most abundant trinucleotide repeat, representing 19.7 % of trinucleotide repeats. Other SSR repeat types were AT-rich. A total of 23,126 primer pairs (98.7 % of total SSRs) were designed to amplify SSRs. Fifty-three genomic SSR markers were tested in 37 opium poppy accessions and seven Papaver species for determination of polymorphism and transferability. Intraspecific polymorphism information content (PIC) values of the genomic SSR markers were intermediate, with an average 0.17, while the interspecific average PIC value was slightly higher, 0.19. All markers showed at least 88 % transferability among related species. This study increases sequence coverage of the opium poppy genome by sevenfold and the number of opium poppy-specific SSR markers by sixfold. This is the first report of the development of genomic SSR markers in opium poppy, and the genomic SSR markers developed in this study will be useful in diversity, identification, mapping and breeding studies in opium poppy.Scientific and Technological Research Council of Turkey (TUBITAK-109O797

    The impact of feature selection on one and two-class classification performance for plant microRNAs

    Get PDF
    MicroRNAs (miRNAs) are short nucleotide sequences that form a typical hairpin structure which is recognized by a complex enzyme machinery. It ultimately leads to the incorporation of 18-24 nt long mature miRNAs into RISC where they act as recognition keys to aid in regulation of target mRNAs. It is involved to determine miRNAs experimentally and, therefore, machine learning is used to complement such endeavors. The success of machine learning mostly depends on proper input data and appropriate features for parameterization of the data. Although, in general, two-class classification (TCC) is used in the field; because negative examples are hard to come by, one-class classification (OCC) has been tried for pre-miRNA detection. Since both positive and negative examples are currently somewhat limited, feature selection can prove to be vital for furthering the field of pre-miRNA detection. In this study, we compare the performance of OCC and TCC using eight feature selection methods and seven different plant species providing positive pre-miRNA examples. Feature selection was very successful for OCC where the best feature selection method achieved an average accuracy of 95.6%, thereby being ~29% better than the worst method which achieved 66.9% accuracy. While the performance is comparable to TCC, which performs up to 3% better than OCC, TCC is much less affected by feature selection and its largest performance gap is ~13% which only occurs for two of the feature selection methodologies. We conclude that feature selection is crucially important for OCC and that it can perform on par with TCC given the proper set of features.The Scientific and Technological Research Council of Turkey (grant number 113E326

    Systems Analysis of miRNA Biomarkers to Inform Drug Safety

    Get PDF
    microRNAs (miRNAs or miRs) are short non-coding RNA molecules which have been shown to be dysregulated and released into the extracellular milieu as a result of many drug and non-drug-induced pathologies in different organ systems. Consequently, circulating miRs have been proposed as useful biomarkers of many disease states, including drug-induced tissue injury. miRs have shown potential to support or even replace the existing traditional biomarkers of drug-induced toxicity in terms of sensitivity and specificity, and there is some evidence for their improved diagnostic and prognostic value. However, several pre-analytical and analytical challenges, mainly associated with assay standardization, require solutions before circulating miRs can be successfully translated into the clinic. This review will consider the value and potential for the use of circulating miRs in drug-safety assessment and describe a systems approach to the analysis of the miRNAome in the discovery setting, as well as highlighting standardization issues that at this stage prevent their clinical use as biomarkers. Highlighting these challenges will hopefully drive future research into finding appropriate solutions, and eventually circulating miRs may be translated to the clinic where their undoubted biomarker potential can be used to benefit patients in rapid, easy to use, point-of-care test systems

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    Determining the C-terminal amino acid of a peptide from MS/MS data

    Get PDF
    Proteomics is currently chiefly based on mass spectrometry (MS) which is the tool of choice to investigate proteins. Two computational approaches to derive the tandem mass spectrum precursor’s sequence are widely employed. Database search essentially retrieves the sequence by matching the spectrum to all entries in a database whereas de novo sequencing does not depend on a sequence database. Both approaches benefit from knowledge about the enzyme used to generate the peptides. Most algorithms default to trypsin for its abundant usage. Trypsin cuts after arginine and lysine and thus the c-terminal amino acid is not known precisely and usually either of the two. Furthermore, 90% of protein terminal peptides may not end with either arginine or lysine and may thus contain any of the other amino acids. Here an algorithm is presented which predicts the c-terminal amino acid to be arginine, lysine or any other. Here an algorithm, named RKDecider, to sort the c-terminal amino acid into one of three groups (arginine, lysine, and other) is presented. Although around 90% accuracy was achieved during data mining spectra for rules that determine the c-terminal amino acid, the implementation’s (RKDecider) accuracy is a little less and achieves about 80%. This is due to the fact that the decision trees were implemented as a rulebased system for speed considerations. The implementation is freely available at: http://bioinformatics.iyte.edu.tr/RKDecider.Turkish Academy of Science

    Computational and bioinformatics methods for microRNA gene prediction

    No full text
    MicroRNAs (miRNAs) have attracted ever-increasing interest in recent years. Since experimental approaches for determining miRNAs are nontrivial in their application, computational methods for the prediction of miRNAs have gained popularity. Such methods can be grouped into two broad categories (1) performing ab initio predictions of miRNAs from primary sequence alone and (2) additionally employing phylogenetic conservation. Most methods acknowledge the importance of hairpin or stem-loop structures and employ various methods for the prediction of RNA secondary structure. Machine learning has been employed in both categories with classification being the predominant method. In most cases, positive and negative examples are necessary for performing classification. Since it is currently elusive to experimentally determine all possible miRNAs for an organism, true negative examples are hard to come by, and therefore the accuracy assessment of algorithms is hampered. In this chapter, first RNA secondary structure prediction is introduced since it provides a basis for miRNA prediction. This is followed by an assessment of homology and then ab initio miRNA prediction methods.TUBA GEBI
    corecore